Tutorials References Menu

Pandas - Cleaning Data of Wrong Format


Data of Wrong Format

Cells with data of wrong format can make it difficult, or even impossible, to analyze data.

To fix it, you have two options: remove the rows, or convert all cells in the columns into the same format.


Convert Into a Correct Format

In our Data Frame, we have two cells with the wrong format. Check out row 22 and 26, the 'Date' column should be a string that represents a date:


      Duration          Date  Pulse  Maxpulse  Calories
  0         60  '2020/12/01'    110       130     409.1
  1         60  '2020/12/02'    117       145     479.0
  2         60  '2020/12/03'    103       135     340.0
  3         45  '2020/12/04'    109       175     282.4
  4         45  '2020/12/05'    117       148     406.0
  5         60  '2020/12/06'    102       127     300.0
  6         60  '2020/12/07'    110       136     374.0
  7        450  '2020/12/08'    104       134     253.3
  8         30  '2020/12/09'    109       133     195.1
  9         60  '2020/12/10'     98       124     269.0
  10        60  '2020/12/11'    103       147     329.3
  11        60  '2020/12/12'    100       120     250.7
  12        60  '2020/12/12'    100       120     250.7
  13        60  '2020/12/13'    106       128     345.3
  14        60  '2020/12/14'    104       132     379.3
  15        60  '2020/12/15'     98       123     275.0
  16        60  '2020/12/16'     98       120     215.2
  17        60  '2020/12/17'    100       120     300.0
  18        45  '2020/12/18'     90       112       NaN
  19        60  '2020/12/19'    103       123     323.0
  20        45  '2020/12/20'     97       125     243.0
  21        60  '2020/12/21'    108       131     364.2
  22        45           NaN    100       119     282.0
  23        60  '2020/12/23'    130       101     300.0
  24        45  '2020/12/24'    105       132     246.0
  25        60  '2020/12/25'    102       126     334.5
  26        60      20201226    100       120     250.0
  27        60  '2020/12/27'     92       118     241.0
  28        60  '2020/12/28'    103       132       NaN
  29        60  '2020/12/29'    100       132     280.0
  30        60  '2020/12/30'    102       129     380.3
  31        60  '2020/12/31'     92       115     243.0

Let's try to convert all cells in the 'Date' column into dates.

Pandas has a to_datetime() method for this:

Example

Convert to date:

import pandas as pd

df = pd.read_csv('data.csv')

df['Date'] = pd.to_datetime(df['Date'])

print(df.to_string())
Try it Yourself »

Result:


      Duration          Date  Pulse  Maxpulse  Calories
  0         60  '2020/12/01'    110       130     409.1
  1         60  '2020/12/02'    117       145     479.0
  2         60  '2020/12/03'    103       135     340.0
  3         45  '2020/12/04'    109       175     282.4
  4         45  '2020/12/05'    117       148     406.0
  5         60  '2020/12/06'    102       127     300.0
  6         60  '2020/12/07'    110       136     374.0
  7        450  '2020/12/08'    104       134     253.3
  8         30  '2020/12/09'    109       133     195.1
  9         60  '2020/12/10'     98       124     269.0
  10        60  '2020/12/11'    103       147     329.3
  11        60  '2020/12/12'    100       120     250.7
  12        60  '2020/12/12'    100       120     250.7
  13        60  '2020/12/13'    106       128     345.3
  14        60  '2020/12/14'    104       132     379.3
  15        60  '2020/12/15'     98       123     275.0
  16        60  '2020/12/16'     98       120     215.2
  17        60  '2020/12/17'    100       120     300.0
  18        45  '2020/12/18'     90       112       NaN
  19        60  '2020/12/19'    103       123     323.0
  20        45  '2020/12/20'     97       125     243.0
  21        60  '2020/12/21'    108       131     364.2
  22        45           NaT    100       119     282.0
  23        60  '2020/12/23'    130       101     300.0
  24        45  '2020/12/24'    105       132     246.0
  25        60  '2020/12/25'    102       126     334.5
  26        60  '2020/12/26'    100       120     250.0
  27        60  '2020/12/27'     92       118     241.0
  28        60  '2020/12/28'    103       132       NaN
  29        60  '2020/12/29'    100       132     280.0
  30        60  '2020/12/30'    102       129     380.3
  31        60  '2020/12/31'     92       115     243.0

As you can see from the result, the date in row 26 where fixed, but the empty date in row 22 got a NaT (Not a Time) value, in other words an empty value. One way to deal with empty values is simply removing the entire row.


Removing Rows

The result from the converting in the example above gave us a NaT value, which can be handled as a NULL value, and we can remove the row by using the dropna() method.

Example

Remove rows with a NULL value in the "Date" column:

df.dropna(subset=['Date'], inplace = True)
Try it Yourself »